Europisches Patentamt

® g European Patent Office @IPub“eeﬁon-mmber: | ° 209 795
Office européen des brevets A2

e

EP 0 209 795 A2

N

(@) Application number: 861093714
@ Dste of filing: 09'.07.‘6

EUROPEAN PATENT APPLICATION

@ m.c: G 06 F 15/60

®) Priority: 22.07.85 US 757840
@ Date of publication of application:
280187 Bulletin 675

@ Designated Contracting States:
BE CH FR GB IT L SE

@ Applicant: WESTINGHOUSE ELECTRIC CORPORATION
Westinghouse Bullding Gsteway Center
Pittsburgh Pennsylvania 15222{US)

G wnventor: Cook, Bruce Michael
425 Tivoli Road

Plttsburgh Pennsylvania 152395(US)

@ A method of cresting andexowﬁn’gubloddvonlqg_!c.

@ The present invention is directed to a method of cresting
and executing 2 logic driven table comprising entering mne-
monics corresponding to signals in the systern, cresting a
logic tabie from the entered mnemonics, verifying the eccura-
cy of the logic table and executing the logic design of the table
using actual input signals to produce actual output control
signals. During the execution of the logic 1sble the input sig-
nals are overlayed on the mnemonics of the table and
Boolesn logic equation for a basic logic element is executed
for each stage within each totem in the table. The execution of
the equation is repeated until all input signals and the effects
of the input signals have propagated through the table.

FlG. 2.

PO T W = s oy " ——— — Y —— Y T S - - ——— = v - ——

Associati Via Meravighi, 16
120123 Milan{IT)
] !] 1
FLID SYSTENS nwe i WAIFACTAE
DCREERIG. | ENGHECKING IR T)
]
| [ome 1! ! Meow] o
AN bl oese | o
} !
W !
] i
] I
) 1
1]
| 1
; -
VERE | |
P 1
&) o e]t -
1] wae » I
: WA J T oo | ! |
)—-"]
el -1 g ;
L2 O -7 |
] b | SOTRARE i
I ' b ‘35 1
: : wEE] |
] [§ |
: i ‘ : 1 s | o
) o] | oo
T e |
}
] !”m ! fgﬁmn i

Croydon Prnting Compeny 110,

10

15

20

25

) W ' . 0209795

1 .
A METHOD OF CREATING AND EXECUTING TABLE DRIVEN LOGIC

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention generally relates to a
computer aided method for the design of a logic system such
as the actuation logic for engineered safequard functions
in a nuclear power plant and to the execution of the logic
for the. s.ystem as table driven logic, and more particular-

/1y, the present invention includes a method of expressing a

logic function in the form of a table representing a logic
array constructed of one or more basic building blocks,
where the table clearly defines the prioritization of
gctuatioh and interlock input signals, can be generated
directly from a precise verbal description of a given
device or system where the conténts of the table are input
into a microcomputer ar_ad executed using a ‘universal table
driven logic execution routine.

Description of the Related A_rt

In a nuclear power plant, engineered safeguard

- functions consist of actions to be taken to mitigate damage

and ensure safety under abnormal or emergency conditions.

. These actions may be initiated manually, by means of
~pushbuttons or automatically, based on inputs from sensors

which can transmit information concerning process vari-
ables and the states of actuated devices such as valves and
pumps. To control those actuated devices which are neces-
sary to implement the desired safeguard functions, these

10

15

20

25

30

35

2 G209795 -

sensor inputs are processed by redundant logic networks
which generate outputs through a power interface to ener-

gize or de-energize the proper devices in the proper

‘sequences subject to any required enabling or interlock

slgnals.

In all cases relating to a nuclear power plant,
the design of the logic network begins with a fluid systems
engineer who reduces the desired safeguard action to a
sequence of operations of wvarious fluid control devices
such as the valves and pumps. The operation of these
devices must be made subject to various interlock signals
based on parameters such as pressure or the present state
of the actuated devices. A verbal logic statement which
accounts for each input, interlock and output signal is
generated by the engineer, as illustrated in Fig. 1, for
each actuated device. The engineer then transposes these
requiréments into the form of a logic or interlock sketch.
Once the logic sketch is completed, the verbal regquirements
produced by the systems engineer are unnecessary. The
fluid systems engineer forwards the interlock sketch to an
instrumentation and control engineer who develops a logic
diagram, adds provisions for status indication and power
interface circuitry and develops interconnection drawings
in the fofm of interposing logic power interface and
elementary wiring diagrams. The design is further refined
by a manufacturing engineer who develops schematics geared:
to the specific hardware to Vbé used to implement the
circuit, designs a hardware circuit that is functionally
equivalent to the logic diagram and'createé'detailed'wiring
lists which are used by a ﬁanufacturing group to construct
a final embodiment of the logic. At various stages in the
process, the design may be checked by sending the work
product back to the previous engineering stage for verifi-

cation. The overall design is then validated by system
testing.

10

15

20

25

30

35

3 . 6209795

SUMMARY OF THE INVENTION
The present invention lowers the cost of the
development of logic hetworks; removes unnecessary develop-
mental stages during the development of the logic network,
substitutes software for hardwired logic, increases the

" viability of system designs, removes points of human

created error, and is directed to a method of creéting and
executing a logic driven table comprising entering the

" ‘mnemonics corresponding to signals in the system, creating
.a logic table from the entered mnemonics, verifying the
‘accuracy of the logic table and executing the logic table

ﬁsing actual input signals to produce actual output control

" signals.

The invention in its broad form comprises a
method of creating and executing table driven logic for a
logic system having input signals, characterized by the
steps of: (a) enterihg mnemonics corresponding to signals

in the system; (b) creating a logic table (20) from the

entered mnemonics using at least AND, OR and NOT opera-
tions; (c) verifying the logic table for its accuracy; and
(d) executing the logic defined by the logic table using

the input signals to produce output signals.

BRIEF DESCRIPTION OF THE DRAWINGS .

A more detailed understanding of the invention
may be had from the following description of a preferred
embodiment, given by way of example and to be understood in
conjunction with the accompanying drawing wherein:

Figure 1 is a diagram of the stages of a prior
art hardware design process;

Fig. 2 is a diagram of a deSign process according
to the present invention;

Fig. 3 is a diagram of a basic logic element 10

""of the present system;

Fig. 4 is a logic table 20 for the basic 1691c
element 10 of Fig. 3;

Fig. 5 is a totem comprising three basic logic
elements 14-16;

10

15

20

25

30

35

. C209795

Fig. € is a logic table 2C fecr Frg. 5;

Fig. 7(A) is a logic diagram 30 for a latch logic
element; .

Fig. 7(B) is a simplified logic diagram 30 for a
latch logic eleméht;

Fig. 8 is a logic table 20 for the latch of Fig.

Fig. 9 is a bypass valve logic table 20;

Fig. 10 is a logic diagram 30 for the bypass
valve of the logic table 20 of Fig. 9;

.

Fig. 11 is an example of the logic state analysis

for the table 20 of Fig. 9;

Fig. 12 is a logic table 20 for a home alarm
system; ’

Fig. 13 is the produced logic diagram 30 for the
table 20 of Fig. 12;

Fig. 14 is the logic state analysis of the table
20 of Fig. 12;
Figs. 15-17 depict the stages of the logic table

of Fig. 12 during the stages of its processing using actual
inputs to produce an output;

Fig. 18, including 18(A)-18(G), is a flowchart of

" the editor software of the present invention;

Fig. 19, including 19(A)-19(F), is a flowchart of
the software which draws the logic diagram;

Fig. 20, including 20(A)-20(E), is a flowchart of
the logic analyzer which produces the state ahalysis for
each logic network; and ‘

Fig. 21, including 21(A)-21(B), is an example of
a general purpose execution module for executing the logic
defined by anyAlogic table.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In conttast to the prior art process, the present
invention, as illustrated by Fig. 2, permits a verbal logic
statement generated by a fluid systems engineer to be

-entered directly into a computer data base which is then

interpreted by the computer to automatically generate logic

10

15

20

25

- 30

as

5 i 0209795
diagrams, perform a system analysis directed toward identi-
fying unstable states or states from which no combinations
of inputs will produce a change in outputs and for produc-
ing the logic table. The logic table then can be processed
by a general purpose logic table execution foutine executed
by a conventional microprocessor to produce the necessary
outputs from actual inputs.

As can be seen in Fig. 2, the pProcess according
to the present invention starts with the verbal logic ‘
requirements which are docunented by the fluid systems
engineer in a natural language form. From the verbal
requirements the instrumentation and control engineer

' 'generates a data base that can be input into the computer.

The data base represents the logic in a standard tabular
form. By casting the logic in a standard form, consistency
in the design of the entire system is ensured. - The comput-
er then automatically produces the logic diagrams and a
logic state analysis which are used for design verifica-
tion. The generated docu‘mgnt sets forth the functional
operation of the logic and can be easily checked against
the verbal logic requirements. The interposing' logic power
interface and elementary diagrams are generated from which
interconnect writing diagrams are prepared. The logic

_ table then can be incorporated into a .microprocessor and

validated by systems testing. Once validated the logic
table can be burixed into a ROM and executed by a general
purpose microprocessor. o

As can be sgeen by comparing Figs. 1 and 2,
sign:lfiqant man-hour savings result from using the present
invention for each logic network design,

It is well known that any function may be derived
from a combination of logic states such as AND, OR and NOT

- operations. The present invention takes advantage of this

known principle and defines a basic logic element 10 which
is made up of the three fundamental logic operators as
illustrated in Fig. 3. The fundamental logic operators AND
11 , OR 12 and NOT 13 are connected 80 that an interlock

10

15

20

25

30

35

6 © 6209795

signal (INK) interlocks or prevents an output of both an
actuation signal (ACT) and a signal from a previous stage
(STG(n+1)) wuntil the interlock signal is removed. The
output can be represented in the terms of the inputs by the
following Boolean equation:

STG(n) = [NOT INK(n)] AND [ACT(n) OR STG(n+l1)].

A logic table 20 for the basic logic element 10
of Fig. 3 1is illustrated in Fig. 4. This logic table
indicates that the STG(n) function is actuated by the
previous stage at a priority level of 2, the actuation
signal at a priority level of 1 and is interlocked by
INK(n) at priority level 1. The method of creatiné the
logic table of Fig. 4 along with the rules and definitions
for creating such a table will be discussed in detail
hereinafter.

A plurality. of the basic logic elements may be
connected vertically in a chain to form a totem in which
the actuation and interlock signals are assigned priorities
as illustrated in Fig. 5, which shows an example of a totem
built with three basic logic elements 14, 15 and 16. 1In
this figure stage number can be interpreted as the priority
level of the actuating and interlocking signals. Each
totem has only one output but any number of totems may be
connected to form multiple output functions in which the
output of any totem may be used as an input to the actua-
tion or interlock inputs of any other totem. In the single
totem. example of Fig. 5, the output function STG(1l) of the
priority 1 totem 14 is actuated by the.actuation ‘'signals
ACT(1) at the first priority level, ACT(2) on the second
priority level and ACT(3) on the third priority level. The
interlock signal 1INK(l) locks or interlocks actuation
signals ACT(1-3) as well as interlock signals INK{(2-3).

The interlock signal INK(2) interlocks actuation signals'

ACT(2-3) and_ interlock signal INK(3) of the priority 2
totem 15, while the interlock signal INK(3) interlocks at
the priority 3 totem 16. The interlock signal INK(1)

10

15

20

25

30

35

7 0 0209795
represents the highest priority interlocking signal. 1In
general the priority interlock signal interlocks every
actuation and interlock signal of lower or equal priority
level in the totem. The above statement is used as one of

-the fundamental rules in constructing logic in the form of

totems. Because the output of any totem can be used as an
input to any totem on any priority level it.is possible to
define a totem as an intermediate logic to be used with
other totems in the interposing logic. Such an auxiliary
logic totem can be used to define a particular mode of
operation, for example, an automode or a signal latching
function to be dis_cuiased later.

Fig. 6 illustrates the logic table 20 for the
totem of Fig. 5. As can be seen from Fig. 6 the logic
table is constructed starting at the highest priority level
and working up the totem to define the actuation and
interlock signal positions. The outfmt signal from each
higher stage is implied as an input to the next stage
because the totem has more than one priority level.

A latch is created when the output of the totem
is entered as one of its own actuations, as illustrated in
Fig. 7(A). The latch consists of two basic elements 17 and
18 and includes three priority levels or stages. The
output of stage 1 is fed back to the token at priority
level or stage 3. The latch is set by the actuation sighal

‘ACT(Z) and reset by interlock signal INK(1) or the inter-

lock INK(2). The actuation signal input of stage 1 is not
used. Fig. 7(B) illustrates a simplified version of Fig.
7(A). The latch must be in the lowest position in the
totem and no combinatorial logic can be allowed below the
latch, however, the output of the ‘latch can be used as an
input into another totem if logic after_.the' latch is
necessary.

Fig. 8 1illustrates the logic table 20 for the
latch of Fig. 7. As can be therein seen the third priority
or stage input signal on the actuation side is the output
of the STG(1) latch and the output of the latch is

10

15

20

25

30

35 -

8 ' ©209795 "

‘interlocked by interlock signal INK(1l) at priority level 1

(stage level 1) and by the interlock signal INK(2) at the
second stage or second priority level. Once again it
should be self evident that the logic table is created from
bottom (highest priority) to top (lowest priority) of the
totem. That is, first the input signals to°the first stage
are examined and found to be the interlock signal INK(l)
and the next highest stage output STG(2). Since the next
highest stage input is implied no entry is necessary,
however, an entry could be made in the table at priofity
level 1 on the ACT side. If the entry is made it would be
equ:walent to having both inputs to the OR gate of basic
logic element 17 receiving the output from STG(2). Next
the input signals to stage 2 are examined and found to be
INK(2), ACT(2) and STG(l). Because the STG(l) signal is
acting as a STG(3) signal, it must be entered on the next
highest priority or stage level number 3.

In constructing the logic tables from a complete
verbal description of the required logic the following '
rules and definitions must be followed:

1. Each defined function must either be actuated
or interlocked (or both) on the first priority level. 'I‘hat
is, the table must have an entry on the first line for any
given function. ‘

2. A function cannot be actuated and interlocked
by‘the same signal at the same time.

3. A function cannot'be actuated or interlocked
by the same signal on two different priority levels,
although t_:he same input signal | can be shared between
different functions.

4. The prlorlty of the last interlock in a
function must be higher than the priority of the last
actuation in this function.

5. Each signal used in the table must have a
definition and each defined signal must be used in the
table, there shall be a one-to-one correspondence between

10

15

20

25

30

35

9 Do 0209795 &
the table and definitions, and no multiple definitions of
signals are permitted.

6. The symbol "A" in front of a signal in a
table ind1cates a logical NOT operation to be performed on.
the signal following the operator.

7. The symbol "." in front of a function name
indicates a delay is to be performed on this function where

the delay time period must be specified when the function

‘is defined.

8. A function can be used as one of its own
actuations (example: a latching function) or as an input
(either an actuation or interlock) in other functions.

9. If a function is to be used as intermediate

“logic it should be defined as an auxiliary function ndt as

an output function.

As a first example of the creation of the logic
table and execution thereof we will consider a boron
thermal regeneration system bypass valve. In general the

.regeneration system has three operating modes: off, dilute

and borate. The operating mode is determined either
manually by the operator positioning an MCB control switch

- or automatically by the power control system. When in

automatic, the regeneration system is always operating in

either dilute or borate mode which provides faster response

and reduces the start and stop transients in the system.

The bypass valve diverts water into the regeneration

system. The fluid systems engineer provides the following

description to the instrumentation and control engineer:
The valve is operated by two pushbuttons, auto
and open, the regeneration system "dilute or
borate” automatic signal ‘and the status of an
isolation valve. There is one solenoid valve and -
the solenoid shall be energized to close the
valve and de-energized to open it. The auto
pushbutton activates an auto operation mode.
When in the automode:

10

15

20

30

35

40

w0 . 0202795

1. When the dilute or borate signal is in
coincidence with the open position of the
isolation wvalve (a 1limit switch signal
exists) the bypass valve is closed (solenoid
is energized). _

2. When the open pushbutton is activated the
valve is opened (the solenoid is
de-energized) by changing the mode of
operation to manual. The automode is reset
by open pushbutton.

When in manual mode the valve is always open.

From the above verbal description, the instru-
mentation and control engineer generates a logic data base
and inputs same into the computer in the form of the logic
table 20 of Fig. 9 which corresponds directly to the verbal
description above. 1In thé example, automode is defined as
an auxiliary function W and the closed valve command as an
output signal of function B, therefore there are two totems
describing the lock logic and therefore two functions in
the totem. In the table, the input signal E represents the
open pushbutton, G the auto ‘pushbutton, L the dilute or
borate signal and M the closed isolation wvalve signal.

The logic table and a corresponding data record

" is created using the editor program illustrated in Fig. 19.

The data record created would look as follows:

01 8245

02 1 BORON THERMAL REGENERATION SYSTEM (BTRS)
03 BTRS bypass valve '

04 AOV N/A Non Safety NO NO OPEN (dwg. number)
05 E OPEN PUSHBUTTON

05 G AUTO PUSHBUTTON _

05 L DILUTE OR BORATE SIGNAL

05 M VALVE 7054 CLOSED (33bo)

06 B CLOSE VALVE

07 W AUTO MODE OPERATION

08 B~ B ==vee WM ~=m=

08 WG W ===n E =mmee-

09 1 . OPEN VALVE 8245 ON LOSS OF POWER
09 (DE~ENERGIZE SOLENOID TO OPEN)

10 EOF NO. 1

10

15

20

.28

30

35

1 i 0208795

In this record line Ol corresponds to the compo-

nent I.D. number, 1lines 02 through 04 represent the
component's description. Lines numbered 05 provide the
definitions of the input signals (there are four lines with

the number 05), line 06 defines an output signal and line.

07 defines an auxiliary function. The logic Table is

described by lines 08. There are two lines in the logic
Table corresponding to two logic totems defined by lines 06
and 07 (output and auxiliary function). The record is
automatically' verified by the computer against the set of
rules previously discussed. The format of the record is
verified rather than a logic itself. If an error is
detected, the record must bé corrected before it is stored
on the disc. Line 09 (up to five lines fifty characters
long each can be used) is provided for special notes. Line
10 marks the end of record. Each record represents infor-
mation about one component. '

Once the logic' data base is created it can be
used to generate a logic diagram 30 (see Fig. 10) using the
program illustrated in Fig. 20. As described earlier,
there is a direct correspondence between a logic ta_ble and
& logic diagram. During logic diagram generation first
totems are generated and interconnectidns between the

totems are made and any other information and labels for

input and output signals are added. The logic diagram 30
for the bypass valve is illustrated in Fig. 10. To print
such a diagram, a dot matrix printer or graphics capability
printer should be used. Once the logic diagram 30 is .
generated the fluid systems engineer can review the diagram

~ to determine if it meets his requirements. -

It is also possible for the fluid engineer to
receive a logic state analysis 40 which is performed by the
program illustrated in Fig. 21. The logic data base
generated with the editor is used as an input for this
program. First, the complete logic state table is generat-
ed. For each possible state and combination of inputs at
Time T, the output at Time T + 1 is calculated using the

10

15

20

.25

30

35

12 ;. 0208795 -

Boolean equation (1). For example, as illustrated in Fig.
11 when the inputs EGLM and outputs BM are 0000 00 respec--
tively at time T, at time T + 1 the output 00 is provided.
When the inputs are 0100 and outputs are 00 at time T the
outputs are Ol at time T + 1. The inputs and outputs at
time T are provided for each possible state by binary
counting, the inputs are then overlayed on the table and
the Boolean 1ogi_c equation (1) is executed for each stage
(priority 1 level) to produce the relevant outputs.

The program then automatically reduces the state
table and identifies logic states at a time T which have
not changed with the change of input. The logic table is
reduced by eliminating all but the first state which
produces the same output after the output is provided. For
example, in the valve examplev of Figs. 9-11, the state at.
time T with decimal walue 0 and binary wvalue 00 0000
produces outputé of 00 at time T + 1 while the state with
decimal wvalue 1 and binary value 00 0001 also produces an
output of 00. The table is reduced by saving and printing
the state analysis for decimal value O. A;s can be seen
from Fig. 11, the states with decimal values 0-3 produce
the same output as do the states with decimal values B8-15,
etc. The generated table logic analysis 40 is then ana-
lyzed and stable states and transient states are reported.
The state in i.vhich the logic stays after completion of a
sequence of operations is called a stable state. Any state
through which the 'logic passes temporarily during a se-
quence of computations is called an unstable state. For
example, decimal state 4 of Fig. 11 is a transient or
unstable state since if the inputs remain constant and the
outputs change to 01 the state would become state dec¢imal

state 18 which would produce outputs 11. Therefore, a

transition from one stable state to another stable state

occurs only in response to a change in the input variables.

In Fig. 11 an X indicates a "don't care" signal.
Once the state analysis is performed and the
system is reviewed by the fluid systems engineer the logic

10

s

20

25

30

35

13 o | 0209795
table can be loaded into a microcomputer which executes the
general purpose execution® logic illustrated in Fig. 22.

- The details of such an execution will be discussed later.

As an example of the flexibility and power of the
present system to design and execute vanous logic systems
the following example which applies to a simple residential
alarm will be discussed. The written description given to
the instrumentation and control engineer will be substan-
t:ally as follows:

The residence is on apattment type having a

single door and two floors. On each floor

are two windows. The alarm bell should ring

wvhen the front door or any window is open.

A test pushbutton allows the alarm bell to

be rung and stops when the button is re-

leased. An alarm arming switch next to the

front door allows an entrant to turn on the
alarm after he is inside and turn off the

alarm after the bell rings. 4

The input and output signals are defined as
follows: V = front door 1limit switch, F = first floor
window #1, -G = first floor window #2, H second floor
window #1, I = second floor window #2, R = alarm arming

- switch, T = test pushbutton and A = activate alarm signal

(ring the bell). The logic. table 20 generated by the
instrumentation ~and contrbl engineer using the editor
program of Fig. 19 is illustrated in Fig. 12 with the
symbols listed above indicating the corresponding signals.
Once the logic table 30 is generatedv, a logic diaéram, as
illustrated in Fig. 13, is produced using the program
illustrated by Fig. 20. As can be seen by Fig. 13, when
the alarm arming switch is activated any input from one of
the doors or windows actuates the alarm signal A and rings
the bell. After the logic diagram of Fig. 13 is generated
the logic state analysis 40 of Fig. 14 can be generated and
reviewed by the design. engineer. When the review is
completed, the table can be incorporatead into a

10

15

20

25

30

35

14 S 0209795 =,
microprocessor and executed or processed by the routine of
Fig. 21.

The processing of the state table of Fig. 12
using actual inputs to produce actual outputs by a micro-
processor begins by sampling the input signal E-I, R and T.
For example, assuming the input signals are 000110 indicat-

" ing that the second floor window #2 (I) is open and that

the alarm system is activated (R), this input results in an
alarm being produced and assumes that in the prior state no
alarm is produced (I=0) and the system is armed (R=1). The

-following sequence of events occurs in the microprocessor:

first, the input signals are sampled and overlayed in a
table representation in the memory of the microprocessor to
produce a table similar to Fig. 15. Next the Bodlean
equation (1) is applied to each stage (priority level) of
function W from lowest priority 1level (5) to highest

‘priority level. For example, when the ecquation (1) - is

applied to stage 5 a 1 is produced as STG(5). When the
equation (1) is applied to stage 4 a 1 is produced as
STG(4). Eventually, function W assumes a value of 1 as the
STG(1) output. Next the Boolean equation (1) is applied to
function X and A in the same manner resulting in a zero
output for function X and function A.

The table is then updated with the output values
and .appears as in Fig. 16. The application of the Boolean
équation {1) to the table is again performed resulting in
function W=1l, function X=1 and function A=0.

_ The table is again updated with the output values
and éppears as in Fig.'l?é. When the Boolean equation'(l)
is applied to the table the output of function W=1, func-
tion X=1 and function A=l resulting in the ringing of the
bell. _ '

As can be seen from the above discussion, the
Boolean equation must be executed a number of times equal
to the number of totems multiplied by the number of priori-

ty-leVels in each totem. Any known nuclear power safety

10

15

20

25

30

35

S15 I0200795 -
function can be performed using six totems and six priority
levels. ' _

When the instrumentation and .control engineer is
ready to create the logic table he exgcﬁtes the editor
routine depicted in flowchart form in Fig. 18. The editor
routine is an interactive routine which allows the operator
to edit records, 4insert records, delete records, find
records and verify record commands.. The program can
provide a directory of all the records in the file, cross
reference them, and generate a printed copy'of any desired
record. The information as used and edited by the operator
is displayed on a computer monitor. The editor should be
executed on a computer such as an Intel 86/330 having At
least 80K of memory with 32K of working storage and shouild

- be implemented in Intel's version of the Pascal programming

language {Pascal 86).

In Fig. 18, Fig. 18(A) acts as a supervisor and
determines which of the subroutines shoixld_ be executed.
Fig. 18(B) is the delete record routine which deletes a
record by not writing an ID matched record to the output

files. Fig. 18(C) is the insert record routine which

inserts records between read records as an output file is

"being created. Fig. 18(D) is the edit removal routine

which displays the record on a display device and allows
the record to be modified before it is written to the

'output file. ?ig. 18(E) is the summary record routine
which simply outputs the records to a disp;gy'device. Fig.

18(F) is the find record routine and it simply searches for
a matching record string and displays same when found. The
verified record routine of Fig. 15(G) implements the table
creation rules mentioned previously.

After the editor routine is finished creating the
logic table, the program which prints out the table 20 and
the logic diagram 30 is executed as illustrated in Fig. 19.

The program of Fig. 19 allows the operator to print a

summary of the records in a data base, find a particular
record and draw the logic diagram. The Fig. 19(A) routine

10

15

20

25

30

16 0209795
acts as the supervisor and jumps to the appropriate subrou-
tine. The Fig. 19(B) routine simply displays the records
in the data base. The Fig. 19(C) routine allows the
operator to find a record and is very similar to Fig.
18(F). Fig. 19(D) is the supervisor routine for the draw
logic diagram routine and calls the draw totem routine
(Fig. 19(E)) and the connect totem routine (Fig. 19(F)I).
The draw totem routine of Fig. 19(E) draws the totems by

checking the logic table to determine what elements are

used and then places a standard symbol at the appropriate
level in the matrix representation of the drawing within
the appropriate totem. The connect totems routine of Fig.
18(F) also checks the logic table to determine if inputs
and outputs are interconnected and then connects them with
a line using a predetermined line path available in the
matrix representation of the drawing.

The logic analyzer (Fig. 20) is executed next to
produce the logic state analysis 40. "The logic analyzer
also allows 'a summary of records to be produced (Fig.
20(B)), a recbrd to be found (Fig. 20(C)) and the test
logic to be executed. In Fig. 20(D) the Boolean logic for
the variables in the table is calculated. This Boolean

calculation is the same Boolean calculation used in the

general purpose table execution routine illustrated in Fig.
21{(B): The reduce table routine is illustrated in Fig.
20(E) and compares the outputs of time T and T + 1 and
deletes the input whenever the outputs match and the
inputs, and places X (don't care) in the input.

?ig. 21 illustrates the generai purpose state
table execution logic which is executed by a nmicrocomputer

'such as an Intel SBC 88/40 or SBC/86/30 88/45. - At the

beginning of the routine the input signals are .sampled and
the input state vector is generated.
The state vector takes the form:

10

15

20

25

30

35

Pud
~
.

0209795

-

Inputl('.l’).’
Inputz(T)

.

"Inputs at Time T

Input_(T)
Outputl (T)
0utput2 (T)

-

Outputs at Time T

b e e e e e - =

Outputé(T)

-

The state table isg overlaid on the vector table as dis-
cussed with respect to Fig. 15 and all the totem outputs
are calcula_ted (Fig. 21(B)) as discussed with respect to
Figs. 15-17. The Boolean equations which is calculated
(Fig. 21(B)) for a number of times equal to T max plus 1,
where T (Fig. 21(A)) max is the number of totems in the
system, times S max (Fig. 21(B)), which is the number of
stages or priority levels in the totem. The calculation of
the Boolean equation this number of times ensures that any
auxiliary logic signal created in one totem will propagate
through all totems even if all totems are serially linked
in a chain. Once the outputs are all calculated, the
output state is updated and the outputs sent to the output
port. The Boolean logic equation for the basic iogic

. element appears in the routine of Fig. 21(B). Once the

outputs are produced the code is executed again beginning .
with a sample of the inputs.

The many features and advantages of the inventipn
are apparent from the detailed specification and thus it is
intended by the appended claims to cover all such features
and advantages of the method which fall within the true
spirit and scope of the invention. Further, since numerous
modifications - and changes will readily occur to those
skilled in the art, it is not desired to limit the inven-

“tion to the exact operation illustrated and described.

Accordingly, all suitable modifications and improvements

18 . 0209795 -
may be resorted .to, falling within the scope of the inven-

tion. For example, it is possible to link the routines of
Figs. 18-20 into a single routine.

Page 29 : C 52%09795

IDENTIFICATION OF REFERENCE NUMERALS USED IN THE DRAWINGS

LEGEND , REP. NO. FIGURE
AND 11 3
AND 11 5
- AND n 1w
AND 11 7(B)
AND 11 10
_AND 11 13
R 12 3
oR 12 5
OR 12 . 7(A)
OR 12 7(B) .
OR 12 13
NOT 13 3
NOT _ 13 5
NOT 13 5
" NOT 13 O 1(8)
NOT ' : 13 7(¢B)
NOT 13 10
' VERBAL LOGIC REQUIREMENTS . 20 1
© VERBAL LOGIC REQUIREMENTS 20 2
INTERLOCK SKETCHES .2 1
SYSTEMS DESIGN 22 1
* SYSTEMS DESIGN ' 22 2
LOGIC DIAGRAMS) 23 1
ELEMENTARY WIRING DIAGRAMS 24 1
ELEMENTARY WIRING DIAGRAMS 24 2
INTERCONNECT DRAWINGS - 25 1
INTERCONNECT DRAWINGS 25 2
SCHEMATIC DRAWINGS 26 1
WIRING LISTS ' ' 27 1
HARDWARE DESIGN : ’ 28 1
LOGIC CARD SET-UP 29 1
LOGIC DATA BASE , 30 2
INTERLOCK LOGIC DIAGRAMS 3 2
LOGIC STATE ANALYSIS : 32 2

Pge 20 29709793 11

IDENTIFICATION OF REFERENCE NUMERALS USED IN THE DRAWINGS

LEGEND REF. NO. FIGURE
APPLICATION SOFTWARE 33 2
HARDWARE DESIGN 34 2
HARDWARE & SOFTWARE INTEGRATION 35 2
FUNCTION BLE 40 4
FUNCTION A 41 6
FUNCTION STG (1) 42 8
START 60 18(A)
READ FILE NAME OPEN IT AS INPUT
OPEN. OUTPUT FILE N=0 : 61 18(A)
. READ N 62 18(4)
N=1 63 18(A)
DELETE RECORD (1) FIG. 18(B) 64 18(A)
N=2 65 18(A)
N=2 65 18(4)
INSERT RECORD (2) FIG. 18(C) 66 " 18(A)
N=3 ' 67 18(A)
EDIT RECORD (3) FIG. 18(D) - 68 18(A)
Ned | , 69 18(A)
SUMMARY OF RECORDS (4) FIG. 18(E) 70 18(A)
N=5 N 18¢a)
FIND RECORD (5) FIG. 18(F) 72 . 18(A)
N=6 - 73 18(A)
EXIT TO END OF INPUT FILE ' 74 18(A)
ADD RECORD . 75 18(A)
STOP ‘ 80 18(A)
OPERATOR EDIT RECORD ' 81 18(A)
VERIFY RECORD (6) FIG. 18(G) ' 82 18(A)
ERRORS - 83 - 81(A)
SAVE RECORD IN OUTPUT FILE . 84 18(A)
'READ RECORD ID 90 18(B)
END OF INPUT FILE _ 91 - 18(B)
ADD RECORD ‘ 92 18(B)
READ RECORD FROM INPUT FILE ’ 93 18(B)

MATCH: ID ’ 94 18(B)

L 0R09TOE
Page 24 L. 82,504

IDENTIFICATION OF RBPERBNCB NUMERALS USED IN THE DRAWINGS

LEGEND REF. NO. FIGURE
SAVE RECORD IK OUTPUT FILE 95 .. 18(B)
PRINT RECORD BEPORE DELETR 9 - 18(B)
PRINT RECORD ON. LINE PRINTER 97 ~ 18(B)
READ RECORD FROM INPUT FILE 98 18(B)
STOP 99 18(B)
OPERATOR EDIT RECORD 100 18(B)
VERIFY RECORD (6) FIG. 18(G) 101 18(B)
ERRORS - 102 18(B)
SAVE RECORD IN OUTPUT FILE - © 103 18(B)
READ RECORD 1D 110 18(C)
SAVE NEW RECORD IN OUTPUT FILE 110 lS(C)
END OF INPUT FILE , m 18(C)
SAVE TEMP. RECORD IN OUTPUT FILE m 18(cC)
ADD RECORD 112 18(C)
READ RECORD FROM INPUT FILE 112 18(c)
STOP 113 18(C)

- READ RECORD FROM INPUT FILE 113 18(c)
OPERATOR EDIT RECORD 114 18(c)
MATCH ID 114 18(c)
SAVE RECORD IN OUTPUT FILE 115 18(C)
VERIFY RECORD (6) FIG. 18(G) 115 18(C)
SAVE CURRENT RECORD IN '
TEMPORARY RECORD 116 18(C)
ERRORS ' 116 . 18(C)
OPERATOR EDIT NEW RECORD ' 117 18(C)
SAVE RECORD IN OUTPUT FILE 117. - 18(C)
. VERIFY RECORD (6) FIG. 18(G) 118 18(C) -
ERRORS 119 18(C)
READ RECORD ID 120 18(D)
END OF INPUT FILE 121 18(D)
ADD RECORD | 122 18(D).
READ RECORD FROM INPUT FILE ; 123 18(D)
MATCH ID 124 18(D)

SAVE RECORD IN OUTPUT FILE 125 18(D)

Page ZZ

52,0209795

IDENTIFICATION OF REFERENCE NUMERALS USED IN THE DRAWINGS

LEGEND
D1SPLAY RECORD ON CRT
MODIFY RECORD DEFINITIONS
DEFINE LOGIC TABLE
VERIFY RECORD (6) FIG. 18(G)
ERRORS
SAVE RECORD IN OUTPUT FILE
STOP
OPERATOR EDIT RECORD
VERIFY RECORD (6) Fig. 18(C)
ERRORS
SAVE RECORD IN OUTPUT FILE
SAVE CURRENT RECORD NUMBER
M = REC. NUM.
RESET INPUT FILE (POINT TO START)
_READ RECORD FROM INPUT FILE
DISPLAY RECORD NUMBER &
DESCRIPTION ON CRT
END OF INPUT FILE
RESET INPUT FILE _
MOVE TO RECORD NUMBER M
READ REC. FROM INPUT FILE
SAVE CURRENT RECORD NUMBER
M = REC, NUM.
RESET INPUT FILE FOR

* READ (POINT TO START)
READ STRING TO SEARCH FOR (:Cl:)
END OF INPUT FILE
READ NEW RECORD FROM INPUT FILE
SEARCH FOR STRING
‘MATCH
PRINT TO CRT RECORD NUMBER
AND DESCRIPTION
RESET INPUT FILE FOR READ
(POINT TO START)

REF. NO. FIGURE
126 18(D)
127 18(D)
128 18(D)
129 18(D)
130 18(D)
131 18(D)
132 18()
133 18(D)
134, 18(D)
135 18(D)
136 18(D)
140 18(E)
141 18(E)
142 18(E)
143 18(E)
144 18(E)
145 18(E)
146 18(E)
‘147 18(E)
150 18(F)
151 18(F)
152 © 18(F)
153 18(¥)
154 18(F)
155 18(¥).
156 18(F)
157 18(¥)
158 18(F)

Page .. 23

0209795 __

1DENTIFICATION OF RBPERBNCE‘ RUMERALS USED IN THE DRAWINGS

LEGEND

MOVE TO RECORD NUMBER -
READ REC. FROM INPUT FILE
SET ERROR FLAG EQUAL FALSE ERR=0
WO ENTRY IN ACTUATE AND
INTERLOCK FUNCTION
SET ERROR FLAG = TRUE
PRINT ERROR MESSAGE ERR - ERR + 1
FUNCT.. INTERLOCIED AND
© ACTUATE BY SAME SIGNAL
SET ERROR FLAG = TRUE
PRINT ERROR MESSAGE ERR = ERR + 1
 ACT OR INK FROM SIGNAL ON
TWO PRIORITY LEVEL
SET ERROR FLAG = TRUE
PRINT ERROR MESSAGE ERR = ERR + 1}
INK BELOW LAST ACTUATION
. SET ERROR FLAG = TRUE ,
PRINT ERROR MESSAGE ERR = ERR + 1
NO DEFINITION FOR SIGNAL USED
IN TABLE
SET ERROR FLAG = TRUE
- PRINT ERROR MESSAGE ERR = ERR + 1
'HOT ALL SIGNALS DEFINED ARE USED
SET ERROR FLAG = TRUE
PRINT ERROR MESSAGE ERR = ERR + 1
MULTIPLE DEFINITIONS OF SIGNALS
SET ERROR FLAG = TRUE
PRINT ERROR MESSAGE ERR = ERR + 1
. ERROR FLAG = TRUE
- SAVE RECORD. IN OUTPUT FILE
"mnrr TOTAL NUMBER OF ERRORS ERR
START EDITOR AGAIN
(DO NOT SAVE RECORD)

REF. KO. FIGURE
159 18(F)
160 18(F)
170 18(c)
171 18(G)
172 18(6)
173 18(G)
174 18(G)
175 18(G)
176 18(G)
177 . 18(G)
178 18(G)
179 18(G)
180 18(G)
181 18(6)
182 18(G)
183 18(G)
184 18(G)
185 18(G)
186 18(G)
187 18(G)
188 81(G)
189 18(G)
190 18(c)
191 - 18(G)
192 18(G)
193 18(G)
194 18(G)
195 18(C)

Page 2y : S 1'15'293-99795- L-”-.

IDENTIFICATION OF REFERENCE NUMERALS USED IN THE DRAWINGS

LEGEND REF, NO. FIGURE

DISPLAY RECORD & MODIFY

DEFINITIONS 196 18(G)
MODIFY LOGIC TABLE 197 18(G)
START 200 19(A)
READ FILE NAME OPEN IT FOR
READING N=0 201 19(A)
READ IN (MENU) 202 19(A)

=l 203 19(A)
SUMMARY OF RECORDS (1) FIG. 19(B) 204 19(4)
N=2 ' 205 19¢a) .
FIND RECORD (2) FIG. 19(C) 206 19(A)
N=3 207 19(A)
DRAW LOGIC DIAGRAM (3) FIG. 19(D) 208 19(A)
N=4 - 209 19(a)
EXIT PROGRAM CLOSE FILE 210 19(A)
RESET FILE FOR READING :
(POINT TO START) 220 19(8)
CLEAR CRT SCREEN 221 19(B)
READ RECORD FROM FILE 222 19(B)
DISPLAY REC. NUMBER &

DESCRIPTION. ON CRT 223 19(B)
END OF FILE 224 19(3B)-
RESET FILE FOR READING

POINT TO START ' , 225 19(B)
CLEAR SCREEN (CRT) K=0 : 230 19(C)
RESET INPUT FILE FOR READ 231 19(C)
READ STRING TO SEARCH FOR 232 19(C)
END OF INPUT FILE 233 18(C)

"READ NEW RECORD FROM INPUT FILE ‘234 19(C)
SEARCH FOR STRING IN RECORD: 235 . 19(c)
MATCH _ . 236 19(c)
PRINT TO CRT RECORD NUMBER * '

DESCRIPTION K = K + 1 237 19(C)

K=0 238 - 19(C)

Pge 25 - AR097057

IDENTIFICATION OF REFERENCE NUMERALS USED IN THE DRAWINGS.

LEGEND : REF, NO. FIGURE

- PRINT TO CRT TOTAL NUMBER FOUND K 239 19(c)
PRINT TO CRT "STRING NOT FOUND" 240 19(c)
ENTER RECORD NUMBER T0
DRAW LOGIC > N : 250 19(D)
RETRIEVE RECORD NUMBER N

. FROM INPUT FILE 251 19(pb)
SCAN RECORD ‘ 252 19(D)
MORE THAN TWO TOTEMS 253 19(D)
SET :LP: TO BO CBARACT./LINE
SET SCALE = 1| 254 19(D)
SET :LP: TO 132 CHARACT./LINE
SET SCALE = 1/2 : 255 19(p)
PRINT HEADER TOP LABLE 10 :LP: ' 256 19(D)
DRAW TOTEMS SAVE IN GRAPH (&)

FIG. 19(E) , 257 19(D)
CONNECT TOTEMS SAVE IN CRAPH (5)

FIG. 19(F) : 258 19(D)
PRINT GRAPH TO :LP: 259 19(D)
PRINT ON :LP: BOTTOM LABLE &

SIGNAL DEFINITIONS 260 19(p)
RESET ‘PRINTER & INPUT FILE 261 19(D)
Tml : 271 19(E)
y = NSTG - m - 19(B)
K=0 273 19(E)
ACTT (y,2) # " " _ 274 19(E)
K=K+1 . 215 19(E)
ACTT (y,1) = " 276 '19(E)
KeK+2 o 277 19(E)

INKT (y,2) ¢ " " _ 278 19(E)
K=K+ 3 . 279 19(E)
INKT (y,1) = "\" 280 19(E)
KmK+é 281 19(E)

DRAW ELEMENT K IN TOTEM T _
ON LEVEL y 282 19(E)

Page 26

- 0208795..
-*52,504

IDENTIFICATION OF REFERENCE NUMERALS USED IN THE DRAWINGS

LEGEND

y=y-l1

y =0

STGT (1) = ".»

DRAW DELAY AT THE OUTPUT

OF TOTEM T |
T=T+1

T) MAX

T=1

N=1

y = NSTG

STG(T) = ACT (y)

DRAW CONNECTION BETWEEN OUTPUT
OF TOTEM T AND ACT (y) IN TOTRM N
T=N

STG(T) = INK.(y)

DRAW CONNECTION BETWEEN OUTPUT OF
TOTEM T AND INTERLOCK (y)

IN TOTEM N

y=y-l

y=0

N=N+]

N) MAX

T=T+ 1

T) MAX

START

READ FILE NAME OPEN IT FOR
READING N = 0

READ IN (MENU)

N=1

SUMMARY OF RECORDS (1) FIG. 20(B)
N =2

FIND RECORD (2) FIG. 20(C)
N=3

TEST LOGIC (3) FIG. 20(D)

REF. NO. FIGURE
283 19(E)
284 " 19(E)
285 19(E)
286 19(E)
287 19(E)
288 19(E)
290 19(F)
291 19(F)
292 19(F)
293 19(F)
294 19(F)
295 19(F)
296 19(F)
297 19(F)
298 19(F)
299 _ 19(F)
300 19(F)
301 19(F)
302 19(F)
303 19(F)
310 20(A)
311 20(A)
312 200a)
313 20(A)
314 20(A)
315 20(A)
316 20(4)
317 20(A)
318

20(A)

b Y —— @ - — 1+ s — o0 o

LT 0209795
Page 27 . .52°50.5

IDENTIFICATION OF REFERENCE NUMERALS USED IN THE DRAWINGS

LEGEND , REF. KO, FIGURE
N=4 , 319 20(4)
EXIT PROGRAM CLOSE FILE : 320 20()
RESET FILE FOR:READING ’ :
(POINT TO START) 330 20(B)
CLEAR CRT SCREEN 331 20(B)
READ RECORD FROM FILE | 332 20(B)
DISPLAY REC. NUMBER &

DESCRIPTION ON CRT 333 20(B)
END OF FILE 334 20(B)
RESET FILE FOR READING |

POINT TO START 335 20(B)
CLEAR SCREEN (CRT) R = 0 336 20(c)
RESET INPUT FILE FOR READ 337 20(C)
READ' STRING TO SEARCH - FOR 338 20(C)
END OF INPUT FILE 339 20(C)
READ NEW RECORD FROM INPUT FILE 340 ~ 20(c)
SEARCH FOR STRING IN RECORD 341 20(c)
MATCH _ 342 20(C)
PRINT TO CRT RECORD NUMBER &

' DESCRIPTION K = K + 1 343 20(c)
K=0 . 344 20(C)
PRINT TO CRT TOTAL NUMBER FOUND K 345 20(C)
"PRINT TO CRT "STRING NOT FOUND" 346 20(C)
ENTER RECORD NUMBER TO TEST LOGIC 350 . 20(D)
'READSN) 51 20(p)
RETRIEVE RECORD NUM. N FROM , 352 20(D)
SET INPUT/OUTPUT LABLES PRINT
REC. HEADER TO CRT AND :LP: = | 353 - 20(p)

* CALCULATE MAX NUMBER OF LOGIC

STATES MAX MAX = 2 (NO. OF

INPUTS + NO. OF OUTPUTS) 354 20(p)
CLEAR INP/OUT STATE AND - -
LOGIC TABLE I = 0 355 20(D)

P—

Page . 28 R 0%2%795’L1

IDENTIFICATION OF REFERENCE NUMERALS USED IN THE DRAWINGS

LEGEND , REF. NO. FIGURE

UPDATE INPUT STATE AND _
TABLE I = I 4+ 1 356 20(D)
CALCULATE BOOLEAN VARIABLE IN

TABLE; SET OUTPUT STATE VECTOR

AND SAVE IN LOGIC TABLE

SEE FIG. 21(B) : 357 20(p)
I = MAX | 358 20(p)
REDUCE LOGIC TABLE (4) FIG. 20(E) 359 . 20(p)
PRINT REPORT ON :LP: 360 20(p)
K =1 370 20(E)
y=1 7N ~ 20(E)
OUT (1yy (K = OUT (113 (5) 372 20(E)
K=y 373 20(E)

COMPARE INPUT (y) AND INPUT (K) AT
TIME T. PLACE AN "X" IN INPUT (K)
WHICH HAS CHANGED AND DELFTE

INPUT (y) FROM LOGIC TABLE 374 20(E)
vy MAX 376 20(E)
K=K+1 377 20(E)
K) MAX ' 378 20(E)
INITIALIZE INPUT STATE VECTOR 380 21(4)
'SAMPLE INPUT SIGNALS 381 21(A)
GENEBATE INPUT STATE VECTOR

(INPUTS AND OUTPUTS) 382 - 21(a)
N=0 383 21(4)
UPDATE LOGIC TABLE (OVERLAY '

STATE VECTOR ON TABLE) 384 21(A)
CALCULATE ALL TOTEMS (OUTPUTS) .
(1) PIG. 21(B) 385 21(A)
N=N+1 386 21(A)
N)TMAX + | 387 21(a)
UPDATE STATE VECTOR 388 21(a)
UPDATE OUTPUT STATE 389 21(A)

SEND OUTPUT TO 1/0 PORT 390 21(A)

Page _ 29

IDENTIFICATION OF REFERENCE NUMERALS USED IN THE DRAWINGS

LEGEND

1 = 1; SELECT TOTEM NUMBER]
STAGE (SMAX + 1) = FALSE;
INITIALIZE VARIABLE STAGE (SMAX =
NUMBER OF STAGES IN A TOTEM)

-J = SMAX; SET y TO NUM. OF
STAGES IN THE TOTEM

ACT (N) = B ACT(y); GET LOGIC
VALUE OF ACTUATION (y) IN TOTEM I
FROM BOOLEAN TABLE AND ASSIGN. IT
TO VARIABLE AK

IK = B INK(y); GET LOGIC VALUE OF .

INTERLOCK (y) IN TOTEM I FROM
BOOLEAN TABLE AND ASSICN IT TO
LOGIC VARIABLE IK

STG (N) = [NOT INK (N)] AND
[ACT (N) OR STG (y + 1)}];
CALCULATE LOGIC VALUE OF STAGE (y)
y=y-~l

y=1

OUTPUT (I) = STG (y); PUT LOGIC
VALUE OF STAGE (1) TO OUTPUT OF
TOTEN I (OUTRUT VECTOR)

I = TMAX

I=1X+ 1; SELECT NEXT TOTEM

: T 525508
BEF, N0, FPIGURE
400 21(B)
401 21(B)

402 21(3)
403 21(B) -
504 21(B)
405 21(B)
406 21(B)
407 21(B)
408 21(B)
409 ~ 21(B)
410 21(B)

—— e

10

15

20

25

CLAIMS:

1. A method of creating and executing table

‘driven logic for a 1logic system having input signals,

characterized by the steps of:

(a) entering mnemonics corresponding to signals
in the system;)

(b) creating a logic table (20) from the entered
mnemonics using at least AND, OR and NOT operations; .

(c) verifying the logic table for its accuracy;
and

(d) executing the 1logic defined by the logic
table using the input signals to produce output signals.

2. A method as recited in claim 1, wherein the
logic table defines the input and output structure of a
basic logic element (10).;

3. A method as recited in claim 2, wherein said
basic logic element (10) is defined by the equation:
 STG(n) = [NOT INK(n)] AND [ACT(n) OR STG(n+1)]

where n is an integer greater than or equal to 1, STG(n) is
an output of a stage n, INK(n) is an interlock signal at
stage n, ACT(n) is an actuation signal of stage n and
STG(n+l) 1is an output signal from a stage of lower
priority.

4. A method as recited in claim 3, wherein step
(d) executes the equation defining the basic logic element
(10).

5. A method as cited in claim 4, wherein step
(c) includes:

. 0200795 -

10

15

20

4 F T 0209795 ¢

(ci) producing a logic diagram from the logic °
table and
(cii) producing a logic state analysis from the

logic table.

6. A method as recited in claim 5, .vherein the

" logic table "(20) is divided into stages of different
- priority,, the method using totems defining different

functions, wherein step (d) comprises:

(di) overlaying (50) the input signals on the
logic table; '

(dii) executing (52) the equation on each stage
of the logic table from the lowest priority to the highest
pPriority using the equation;

(diii) repeating step (dii) for each totem; and

(div) repeating steps (di) and (dii) for a
number of times equal to the number of totems plus one.

7. A method as recited in claim 6, wherein step
(di) comprises entering the input signals into the logic
table at locations corresponding to the mnemonics cf the
signals. ' '

0209795

1/31

2/31

. 0209795

Fl6. 2.

FLUID SYSTENS
ENGINEERING

3/31

"FIG. 3.

PREVIOS |
ATUTON . SIKE NTEROGK
KT Sl) T WA

- Fl6. 4. -
"
. —
o |02

| KT | INK
| -~ KT INK ()
2 .
3

0209795

0209795
4/31

F1G. 5.
16

a0 oo me | we we o

w,

) PRIRITY 3

r 4 3 PRIORITY 2

- e s o . — —— —— — G — —

e | @
oTe | me
NTG) | B

ool |jw|re]—

5/31

Ste(h)

0209795
FI6.714).
INK(2) INK (1)
PRIORITY LEVEL 3
' PRORITY LEVEL 2
PRIORITY LEVEL |
FlG. 7(8).
KT D w0
2~®) |
' , 13
" AND
!JF"”\B'
AND gy

0209795

6/31_
FlG. 8.
f’42
- PRORITY ST (1)
T INK
| ()
K0 | e
) |
Fl6.9.
W AJTO MODE (PERTON pr
IVEL | . ™ KT I
| B B J ;]
- N u E
L N N -

DN LI IND|—
]

0209795

7/31

/.

QUTPUTS: (T+1)

OO e OO
OO D CD =D

INPUTS: (1)

EGLM

M IOLICED == LD =
PCICIECD) s e C omn e
O3 ICICIC FCILIC
11—l — T — T P P epes

FI6.

0TS ()

LTI > 2> 2L DC D

8/31 0209795
FlG. 2.
A {44
PRORITY| FUNCTIONW FUNCTION X FUNCTION A
LEVEL | ALL ALARM SINALS | ALARM SIGNAL LATCHED) ACTIVATE ALARM SIENAL
NT INK AT | AT INK
W W X X A A
I | E - W F X
2l F - X - T] -
3| ¢ | - - - - -
8 | # - - - - -
5 | | = - - - »
Fl6. 13,
EFGH T

0209795

9/31

Fi16. 14.

(S

SUTPUTS: (T+)

XA

[— —] gD I'l.l'll.l-lllon -——en &

INPUTS+ (T)

R'EF'GHII

O O 5= Ol = 3 e =om P 3 I€ 3¢ 3L D€ xxxxxxogo&.lo..lo'o'o.lo-lo-lo.l
D o w0 PL PLIL FL DL ICIL IECD = xxxo-lxxxxoollllxxixx*xo xxxxxxxxxxx
ooool!ll‘xx{xOOII xxxoolxxxoooolgxxx0000"xxxxxx
COOOOC = ==ICICILICD O = P IC OO ICIOOOOODD === IICICO O O O = a3 ILIC 3
800080"'“'00000‘xoooo"oooooooo"xxoooo ooooglxx

PEIEILICICICILICICIOLICO OO O OO ———— —— PO LI OO OO

OUTPUTS: (T)

v.ﬁxxxxxxxxvohxxxxxxxxxxxxxxxxxvc&vgxxxxxxxxxxxxxxxx)

OCOOOOOCOCOOOO ™ meun .

onzsaswswn&nmmmmmmmm DL P S S A L R

““00880008808000000 .

0209795

10/31

e

s

0]t

0 ¢

0 0| |02

o 1|1 0| !
vIixlxxTaln

I [| w | i | W [iv] |
S _ |
L S

ALY | RV %_
4__?_ ot | v

o

9

3D

o | v |

0 | ¢

of fof o]z
o]0 0|
RIS)

11/31
F16. 17
("
T
KT | INC AT | I AT | X
WX XA R
l. 0 { .
2 0 | 0
3 0
4 |0
5|
—

0209795

12/31 0209795

(- FIG. 18(A)

[0 FLE WARE 0PN 17 A AT OPEN O4TPT FLE o0 }—*!

N,
DELETE RECORD
® FI. B(8).

INSERT RECORD
@® ne. (). [

EDIT RECORD |
@ e 18(n).

‘SNSUARY OF recoeas)” 70
@® FIc. 18(E).

["FiD Recorp 172
® Fic. 18(F).

14
EXITT0 B0

OF INPUT FILE

Biy,
EDNT REBORD
FIG.18(6).

=T

13/31

| SAVE RECORD

IN QUTPUT
FILE

pnD
PRINTER |

FI6. /18(B).

0209795

0209795
14/31)

FIG. 18(C).

o

0209795
15/31

FIG. 18(D).

16/31

?

[SAE cureenT 140
| RECORD MMEER
W= REL MM,

L |
(POINT TO START)

’1- 2

JREAD RECORD
FROM
INPUT FILE

T I
MNBER L DESCRPTION
WO

144

445

w1 e

READ REC. 147

0209795

na; 18(E).

0209795

17/31

- FIG. 18(F).

P
B

~150

M= REC MM

18/31 0209795

PRNT GO} TS

18

~i19

|ERR-ERR-1 |

W (% FI6G. /8(G).

[SE REtm0 I uTeuT FRE |

e ———— . ————a cot——— s 1 e .

19/31

FI16. 19(A)

@D

201 -

0209795

, 0209795
20/31 -

F16. /19(B).

220

/225»

| ot Sy

21/31

F16. 19(C).

230

230

- 0209795

Tt e e e wu v o

F16G. 19(D),

0209795
22/31

ORAW TOLES ¢ ws;"m CRAPH |~257
'$ mi 19(E). .

CONNECT_TOTENS SAVE I\ CRAPH}~258
® Fis BIR.

1 .
TTIRSTC)
b

i

[PRONT ONLP- }~260

Reser PR 2!
3 DOUT ALE

0209795

23/31

F1G. I9(E).

0209795
24/31

F16. /9(F),

r294

DRAN CONNECTION BETWEEN QUTPUT]

OF TOTEM T AND ACT (y) IN

LIOTEMN - 4 (297

DRAW COMMECTYON
el

0209795
25/31

FI6. 20(A)
Gy

READ FILE

-

0209795
26/31

RESET 330
ik,

333

0209795
27/31

F16. 20(C).

336

- ‘346
PRINT‘TO

CRY
"STRING NOT
FOUND"

Fl6. 20(D)

28/31

0209795

.

CALCULATE MAX MUMBER
OF LOGIC STATES MAX
o (0. ')WUI'S*

AND LOGIC TABLE
, l!ro ,

355

CALCULATE BOOLEAN
VARIABLE 1N TABLE
N LOGIC

l——-:‘———] 356
- | _UPDATE INPUT
s-““]”]‘l ;IABLE

351

29/31

0209795

FIG. 20(E)

N0

outm,m i '
“ﬂ o (),)
anY N

pu

wEa,

ﬂ,ml?'l'l' iN
mmm

BIPUT (y) FROM LOGIC TABLE

F16. 2/(A).

30/31

[l [~

82

___ 88
UPDATE
SIATE
VECTOR

384

FIS. a(B).

N-N+} 386

~390
SEND OUTPUT] -
T0 1/0 PORT

0209795

s1/5 | 0209795

FIG. 2I8). Q.

‘A[l'h. \‘.IA - .
ITALIZE VARABTE STAG

(SWAX-RRUNBER OF SICES A TOTEN)
T
SET y TO WUM. OF STAGES IN THE TOTEN
” ‘Acr(;)—-'&m(")

RT3 o e
*FR0 bk T
ASSIN IT TO VARIARLE AX

02

A/404

| Th=B.0Kly)
G LG WAL OF W TOTEN
FROLM BOOLEAN TABLE AKD ASSIO T T0LOGS WRABLE 1x_|

STG00-THGT K0T A0 VTG0 oLty -0] 405
DR OXIE RIE T SE)

S L)

I S t— s

NEXT TOTEM

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original
documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

0] BLACK BORDERS

0 IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

0O FADED TEXT OR DRAWING

0O BLURRED OR ILLEGIBLE TEXT OR DRAWING

O SKEWED/SLANTED IMAGES

0O COLOR OR BLACK AND WHITE PHOTOGRAPHS

O GRAY SCALE DOCUMENTS .

O LINES OR MARKS ON ORIGINAL DOCUMENT

O REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

] OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image

problems checked, please do not report these problems to
the IFW Image Problem Mailbox.

	2004-12-08 Foreign Reference

